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OPERATION BUSTER
SOME MEASUREMENTS OF OVERPRESSURE-TIME VS DISTANCE
FOR AIRBURST BOMBS

Summary. -- The series of tests conducted at the Nevada Test Site from October 22 to
B ovember 5, 1951, was known as Operation Buster. This report deals with measurements of
verpressure-time vs distance for airburst weapons. The tests included one tower shot and
%our air-dropped atomic bombs. The latter four were all nuclear bursts and were designated
® s Baker, Charlie, Dog, and Easy Shots. Relevant information was obtained for the shots
Mcsignated Baker, Charlie, and Easy. Only one measurement was obtained for Dog Shot.
;ata for the first shot, Able, is mentioned briefly. Graphs of pressure vs time are included,
B ccompanied by a discussion of the various observed wave forms. The most salient fact ob-
B crved is that pressures were lower than had been expected.

* % % K ¥

The only two atomic bombs which have been dropped in combat (Hiroshima and Nagasaki)
Wvere each set to explode at a height believed to maximize the amount of structural damage in
i¥he target areas. The selections of the appropriate heights were based on theory and on ex-
‘”';erlments Interpretation of data from small high-explosive shots had shown that a bomb

crease with increasing height of burst up to a so-called ‘Optimum burst height'; for burst
}eights above this optimum the area covered by the same isobar would decrease rather rapid-
with increasing height of burst.

aave been used to construct a chart now known as the height-of-burst chart. This chart shows
he optimum burst height to maximize a given overpressure in the range 4 to 20 psi. It has

During Operation Greenhouse it was established that shock waves associated with atomic
fombs are not necessarily precisely the same, at least near the ground, as shock waves ob-
gerved in connection with high-explosive detonations. The slow rise time of the initial portion
Af the shock wave, coupled with the lack of pressure-distance data for airburst bombs, made
' € measurement of shock waves from bombs to be tested on Operation Buster of more than
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ordinary interest. It was therefore decided to measure with some care the pressure-time
curves for these bursts. These measurements, which turned out to be of somewhat greaterg
interest than had been anticipated, are described in detail here.

The Experiment -- Determination of Points for Height-of-Burst Chart

0\.7.3. @ressure time vs distance measurements for Operation Buster were designed primar
to check the height-of-burst table\sB1 2 used extensively in later publications 3, %. Actually t
selected heights of burst for the predicted Buster yields were such that relatively high over-
pressures were 'optimized'. It was desirable to carry the measurements in close to ground !

zero to obtain measurements in the region of regular reflection.

In arranging the layout (Fig. 1) for the gauge stations,” a gauge was actually placed at
intended ground zero for the Baker, Charlie, and Dog Shots, for which the blast lines (Fig. 3
were primarily designed. To obtain sufficient data to estimate the in-close pressure distri<i f
bution, the gauge stations were placed at 400-{t intervals out to 2,400 feet plus three addltlog
stations out to 5,400 feet.\ The 'T' layout was chosen because of the possibility that either ti
of the T might be used as intended ground zero during the B, C, D series. This choice re- fﬁ
sulted in the gauges looking at different portions of the wave front. To some extent pressurg
distance data would be influenced by any asymmetric properites of the shock front. The pri-
mary surface-gauge installations were in a ground baffle; a macadam circle (or pad) of 10-ft:
radius surrounded the gauge. The macadam was 6 inches thick, and the gauge was mounted? &
vertically in the center. A typical pad is shown in the final stages of preparation in Fig. 2. té

H

‘Smce the transition from regular to Mach reflection has heretofore entered so vitally ?
into the whole notion of optimum heights of burst, an array of gauges was placed 15 feet abov;
grOund to identify this transition. These so-called 'pipe' stations were placed at 400-ft inter
vals from 400 to 2,400 feet lThe primary aim of the measurement was to find at which sta-i
tions both incident and reflected waves could be observed and at which stations only the re-
flected (Mach) wave would be seen. An altitude of 15 feet above ground was deemed sufflc:len
to give the required time resolution, provided the rise time of the shock wave was negllglble
compared with 10 to 25 msec. These pipes were oriented toward intended ground zero, and f
the gauge-bearing members were placed horizontally (Fig. 3). Two gauges were placed on
each pipe, one on either side of the pipe in the horizontal plane. (A typical gauge position car,
be seen in Fig. 4.) In the region of regular reflection the incident wave struck the pipe at an":
unsatisfactory angle from the point-of-view of flow. However, after arrival of the reflected:
wave, and always in the Mach region, the flow should have been satlsfactory It was felt that
unsatisfactory flow might upset the pressure-time curve but that the pressure gauge would be
a satisfactory means of identifying transition.

The pressure-time curve apparently was measured with moderate accuracy in most in-
stances. Although there were some violent oscillations which may represent unsteady flow,
there was moderately good agreement between the gauges at 15 feet and those at the surface.
There was also good agreement with the 50-ft pipes (Fig. 5), which were intended to measurg
pressure and arrival times vs altitude. !

In choosing sensitivities of the gauges at each station use was made of predicted yields,
intended heights of burst, and height-of-burst tables 1,2, Sensitivities were chosen to allow
for the highest predicted pressure and for a possible target miss of 400 feet. The recording’
system used (Appendix B) is capable of an over-all accuracy of better than 2 per cent. Takinﬂ
into account the problem of reading back from the recording, the noise level is in the range a

12
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1-2 per cent of the sensitivity. Actually peak amplitudes of pressures recorded were such ; :
(observed pressures were not full scale) that the accuracy is at best 5 per cent, and in the
most interesting region (out to 2,400 feet) peak pressures may be regarded as having a possf
ble error of 10 to 20 per cent. This latter error is judged from the scatter of points on the
pressure-distance graphs. No recording system error leading to such a large estimate has@
been found. A few channels indicated on the pressure-time graphs (Appendix A) are obviousfiE
in greater error. i

]

The over-all system is capable of responding to step transients within one msec. -ag’ﬂ
gauges themselves are capable of faster responses. . ' 7 ﬁﬂ
Because recorded pressures are so low compared with predicted pressures, an effor
was made to find any large errors. For example, there was considerable concern over a
transient at zero time which forced all the galvanometers off scale, causing a slight perma- g
nent set in a few of them. All galvanometers from the two recorders were checked against
the factory sensitivity and were accurate within the specified 15 per cent. Gauge sensitiviti
have not yet been reviewed. (However, there is no reason to expect any changes, judging
from experience at Greenhouse and one or two field checks made before Buster Easy.) Thu
it is concluded that no gross errors occurred which would affect a large number of gauges.

On Shot Dog only one pressure-time curve was recorded because the timing signal sta
ing the recording paper arrived 5 seconds late.

Results -- Low Peak Pressures and Unconventional Shock-Wave Forms

Peak pressures shown on the pressure-distance curves (Figs. 6, 7, and 8) were lowe
than anticipated. Predicted pressures were plotted from LA-743R, using the heights of bur
and yields in Table I.

TABLE I
- Shot Height (ft)  Yield (ki)  Htfyl/3
Baker 1,118 3.1 765
Charlie 1,111 14.0 461
Dog 1,417 21.5 510
Easy 1,314 30.5 422

Examination of Figs. 6, 7, and 8 reveals that the data fall below the predictions in the rang.';»,
of military inierest. At large distances observed and predicted peak pressures are more i
nearly in agreement. It seems conclusive that at large distances (but outside the range of i
ful overpressures) the assumption of using twice the yield times some efficiency factor pro-‘é‘i
bably gives correct values of peak pressure. That is, viewed from a point somewhere beyof:
the gauge line, it might be deduced that the yields were as expected. This deduction, from %
extrapolating the curves, suggests that the assumption of low efficiency is not adequate to %
explain observed facts shown in Figs. 6, 7, and 8. It will be noted that interferometer gaugaé_%
readings6 from points about two miles from the shots, added to Figs. 7 and 8, provide some}
basis for the extrapolation.
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. nces between observed and predicted pressure-vs-distance curves can not be , of
. ?lsflf;r;y by assuming a low yield, or a small percentage of the yield going into the b}:§
plaine ‘ 4

Shot Baker. -- The pressure-time graphs for each shot are arranged in Appendix A i
sequence according to range from ground zero. Except at gauge stations B2 and B3 the pip@.

gauges are at the same range (or nearly so) as the ground-baffle gauges. (Figure 1 gives q*
tails such as angles and station designations.) '

Except possibly for stations B215L and B215R the shock has a rise time evidently 1i i
only by the response of the measurement system for all gauges mounted 15 ft above ground;§
Ground baffle gauges show slower rise times (of the order of 10 msec) until the distant gau‘ég
are reached; there the recording system again limits rise time. Presumably this slow I‘lSe

time is an effect of surface roughness; heating of the air near the ground, or possibly ener%_-
absorption resulting from work done on dust, or all three. &

% :
When their records have sharp rise times, the 15-ft gauges should give information qg
cerning transition from regular to Mach reflection. Figures 17-27 show that the incident an,
reflected waves arrive closer together until they are definitely merged at station D, 1,123 fi
from ground zero. Records from pipe stations D, E, and F indicate that the Mach stem ha(!'
formed prior to arrival of the shock at station D. Moreover, data taken at D, E, and F ong

Baker are the only examples in which, at the 15-ft altitude, the peak pressures differ mark]
The most interesting features§

ly from the lower pressures recorded by the surface gauges.
the larger reading, however, is that near the onset of Mach reflection, the higher pressuref
short-lived, dropping back to agreement with the surface gauge within about 10 msec. Evid
from these few measurements, coupled with shock-tube observations’, makes it apparent t§
the very high pressures attributed to Mach reflection near its onset are of short duration. ‘
sumably whatever small amount of energy a spike on the 15-ft gauge record contains is com
pletely absorbed in the region very close to the ground, since the ground gauges do not show
the short-duration peaks. That the Mach effect contributes to higher pressures beyond thls
region of onset is apparent when pressure values are plotted on a height-of-burst chart. %

Pressure-time curves for the pipe stations closer than 1,100 feet indicate that there’ F
might be a flow problem. Pressure observed for the incident wave drops rapidly, becommg
negative in some instances, and apparently fails to reach the proper peak value for the 1ncm
pressure. The flow problem is not serious for the reflected wave, especially once the MacL
stem is formed and flow becomes nearly horizontal. The basis on which validity of the pre=
sure-time curves for the pipe gauges is assumed is that their readings agree moderately we

with those from the surface gauges after the reflected wave has combined with the incident
wave.

able to DDC does not
y legible reproduction

Peak pressures are plotted against range from actual ground zero in Fig. 6 and againi
slant range in Fig. 9. Figure 9 contains data from surface gauges only, whereas peak pres;

sures from all gauges are plotted in Fig. 6. Data from the gauge at station ES do not appea
in either; they appear unreliable for this shot.

cilabl:

opy aval
parinit fall

lars
>

Discussion of the pressure-distance curves will be delayed until data from other shoti
are presented. :

Shot Charlie. -- Though data from Shot Baker may be a little low compared with ex-

pectations, the pressure-time curves do have a reasonable resemblance to the one publisheg
in Effects of Atomic Weapons.

for Shot Charlie (Figs.

However, as can be seen from the pressure-time records i
38-60, Appendix A) recordings at stations B315L and B315R show
sharp rise times and reasonable elapsed time (18.4 msec) between incident and reflected "
waves. Data from stations B215L and R and C15L and R indicate that distinction between thé
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arrivals of incident and reflected waves is still possible, but superimposed on these recq&
is a much grosser feature which appears also on that from the ground-baffle gauge. Thish
step, which is graphically illustrated at Station A2S, is still apparent 2,500 feet from grfercep’
zero. Station DS had the same slant range as A2S but differed in azimuth by 55°. This s, 11.
like feature appears to develop beyond 300 feet from ground zero and is partially developegning &
at 800 feet (Stations B2S and CS). Also, beyond C very slow rise times appear. Fromo $i1t intc
experience with Shot Baker it is evident that there is no hope of discerning onset of Mach
flection. Something obviously happened to the shock wave on Shot Charlie that did not ha f

to the shock wave associated with Shot Baker. g Ac

7 ; , $A ppen

Violent oscillations in pressure occurred at several of the gaugé stations. The expdot rest

ence on Shot Baker suggests that the flow problem is not serious enough to cause these o om an i
tions. A satisfactory explanation of the irregular records has not been made. Apparentlg
gauge 'saw' the 'wiggles', whatever their cause. Since the gauge is sensitive to accelerg
to some extent (an acceleration of 30 g causes about 1 per cent error for a 30-psi gauge);'
oscillations might be caused by accelerations rather than pressure variations. The freqy
of oscillations appears too high to be attributed to the pipe standards, however, and in th
most serious examples, at Stations ES, E15L, and E15R, both the pipe and the ground ba’

gauges show the effect. ' The

ermine

Shot Charlie differs from Shot Baker in that slow rise times are exhibited after the se que

few hundred feet of travel. These slow rise times exist up to fifteen feet in height and acgstiona
for the absence on Shot Charlie of the high peaks observed at Stations D, E, and F on Shot
Baker.
Shot Dog. -- Only one pressure-time curve is available from Shot Dog. A peak ove
pressure of 3.5 psi was observed at 5,450 feet. ?
i
Shot Easy. -- The gauge line was not designed to cover Shot Easy in the same many
as the previous three shots, the closest station being at 2,030 feet. Slow rise times werg
served out to 5, 860 feet except for one of the 50-ft towers. Data for the 50-ft tower at 2
feet have the appearance at all levels of having the peak chopped off for half the positiveﬂg

rise times are slow at all levels. These 50-ft stations are examined more thoroughly els Gre

where.> Peak pressures observed up to 50 feet were only slightly higher than those obsé}f clear !

using ground baffle. This is true at both Stations D and BZ. g;i Instc

ints hav

Whether as a result of asymmetry of the shock front, or errors, large variance ma
the remaining data unsatisfactory from the point of view of plotting an accurate pressure-
distance curve. s

LR

All Shots. -- Peak overpressure ys slant range for all shots is plotted in Fig. 9, vgi
some data from Greenhouse EasyShot.’ Cursory examination shows some deviation from In Sk
'+ In Sh

Greenhouse data. Buster Shots Charlie and Easy look as though the 7-10-psi region doeé?es
are

extend far enough in range. Data from Charlie show that the shock waves suffer some so;ee
eems r

deterioration after traveling a few hundred feet, and those from Easy show similar behav;‘_;h
at Station BZ2. thaps a

-re is no
0 assun

It has been hypothesized that a thermal layer is formed near the ground, causing rees
» ang

peak pressures. Presumably this thermal layer would be more effective for Shots Char]_;.éom
par

and Easy than for Shot Baker since the yields were greater and the burst heights were ngéile lates
respondingly greater. The data indicate that the peak pressure is influenced to heights of -
to 50 feet above the ground. It is also possible that some energy is taken from the shocl‘c; Th
by transporting dust. Shot Baker also would be less affected from this cause since the g&

had not been loosened by previous shots.
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Yrmine the extent to which height-of-burst curves might require modification.

Apparen;

E  positive durations are plotted in Fig. 10. These are subject to error to a greater ex-
are the peak pressures because the noise level causes difficulty in choosing the zero
than in regions of low-pressure readings. Arrival times vs slant range are plotted in
celptSErrorS occurred here because a zero time transient burned out the 2-kc standard

: galvanorneter in some recorders. It was necessary then to rely upon the timing trace
1gnto the two recorders. Elapsed times are therefore not accurate to 1/2 msec as it was
nded they should be, but may be in error by as much as 1 per cent.

A summary of the results of each shot, with graphs of the_pre‘ssﬁre—time curves, appears
[ ppendix A. Data from Shot Able are not included since they are not applicable to nuclear

results however, pressures agree approximately with those which would be expected
an HE explosion of 2.9 tons.

i

Discussion -- Detailed Examination of Findings and Previous Concepts

and in i

r
The intent of the Buster program measurements of air overpressure vs distance was to

Most of

xhibited after the questions were raised in LA-743R and requlred checking at the first opportunity. Some
st in height and a‘}"tlonable aspects of these curves were:
3
» B, and F on Shj The percentage of yield going into air blast
i 1 Reflection coefficients at large distances from the source
” i Reflection coefficients in the region of change from regular to Mach
Dog. A peak 03% reflection (these had been based on intelligent guessing rather than
R ; ‘direct measurement, especially for nuclear explosions)
o £ The degree to which advantages of Mach reflection should be assumed
in the iame may in the pressure vs distance phenomenon, especially as regards
w5(r)'1sf;—3 t;\tvnee: :f[ez' military damage
gig tt;oerffgsﬁ;v:« Greenhouse measurements showed slow rise times occurring near ground zero. It was

»r than those Obslear that this effect would necessarily be observed for airburst weapons.
Instead of providing detailed answers to the questions posed above, the Buster measure-

. ‘s have directed attention to some new problems. Buster shots showed:
large variance n-i

c e pressure .
curate p i Low pressures, especially near ground zero

Slow rise times on two of the three shots, with peculiar shock wave

¥ forms
otted in Fig. 9, x

ne deviation fror In Shot Baker, the first shot over the ground zero designated as Station 3, although pres-
0-psi region doe.

s are low, the rise times are fast for the gauges mounted 15 feet above ground level. Thus
as suffer some s
ems reasonable to examine the data for this shot carefully in relation to the original intent.
1ow similar beha
laps a low percentage of yield going into the blast might explain the low pressures since
e is no evidence of serious deterioration of the peak pressures. The procedure followed
nd, causin iassume that the reflection chart (Fig. 12) is correct and from the known reflected pres-
rou g&s, angles of incidence, and slant ranges to construct a free air (incident) pressure curve
re for Shots Chat

t heights were m
:nced to heights
:n from the shoc

lomparison with that which is assumed for the approximate radiochemical yield -- 3.8 kt
e latest figure for Shot Baker.

) ¥ The results of this calculation are presented in Fig. 13, with the free air curve for a
sause since the g

gt yield (63 per cent of the yield going into the blast).

Since the curve does not parallel
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hat the reflection chart used does not strictly apply- Wk,
the disparity in the curves is even greay)

the free air curve, itis concluded t
the same procedure is carried out for Shot Charlie,

e low in the region of measurement, the free air curveap
derived above appears to indicate a’'low percentage of yield going into the blast. This may ny
necessarily be true, however, because the slope of the curve in Fig. 6 is such that larger
yields are implied at large distances than are deduced from the gauged distances.

Since observed pressures wWer

|
t direct use of the reflection chart does not lead to a l

The conclusion can be drawn tha
Therefore under the test conditions this particular,

free air curve parallel to that expected.
reflection chart does not apply-

It is of interest to explore the results of the attempt to detect the growth of the Mach ]

stem, which can be done only on Shot Baker-~-the only shot in which fast rise times occurred
at the 15-ft altitude. Table II shows the time separation between the incident wave and the

reflected wave:

TABLE II
Distance from Angle of Time
ground zero incidence separation

Station (1) () (msec)
B315L&R 242 12 22
C15L&R 681 31.5 10
B215L 876 38 1-2

D15R 1,123 45 0

The two waves have merged at the 15-ft altitude at approximately 900 feet. From 880 to 1,£Z
feet the reflected pressure is changing from 12 to 10 psi. According to the reflection chart;’,‘

the onset of Mach reflection in this pressure range would occur at an angle of about 50°. A&%
ally the onset of Mach reflection, judging from data in Table II, was at approximately 300. ¢
Theoretically this is within the limit of regular reflection. Also the time separation of 10
msec between incident and reflected waves at C15L and C15R is not consistent with that com|
puted from the observed reflected pressure of 13 psi, lie, 18 msec. A possible explanation ofl
these observations is that a heated layer of air above the ground caused the shock wave to |
travel faster near the ground, thus increasing the angle of incidence and changing the reflec-}‘é

!

tion geometry. :

i

i
)
s
E
i

d baffle stations (compared with that at the

The slow rise time observed at the groun
und level the shock front is altered by |

pipe gauges) illustrates the expected effect that at gro
heating of the air near the ground prior to arrival of the shock and/or a frictional effect. Th

fact that the rise time is again rapid at the distant ground baffle stations is evidence that at!
large distances the heating of the air has a negligible effect. ‘

‘%
data from Shot Charlie is that although the ris

Au interesting feature of pressure-time
d baffle gauges for Shot Baker out to 300 feet,

times are moderately in accord with the groun
beyond this distance the shock wave has a step-like rise in pressure. Times of the order of
100 msec elapse before the peak pressure is attained. The shock wave front as observed
beyond 300 feet from ground zero shows a deterioration compared with its appearance near
ground zero. This deterioration, which is recorded first at stations CS and B2S, is not full
overcome until the shock wave has moved out nearly a mile. The effect extends at least to
the 15-ft altitude, being observed both on the ground baffle and pipe stations.



Various reasons for this effect may be conjectured, including the much-discussed possi-

bilities of:

Heating of the air near the ground

Energy expended in raising large quantities of dust (previously loosened
by Shot Baker) and in overcoming the resulting turbulence

Energy absorbed by the ground

It is suggested that the explanation of the low pressures observed on Shots Baker and
Charlie can not be precisely the same, except possibly in the immediate vicinity of ground
zero. The peculiar rise to peak pressure at so many stations on Shot Charlie suggests that a
new effect took place in addition to what happened on Baker. One obvious difference is that
the ground, relatively firm for Shot Baker, was considerably loosened by that shot prior to
Shot Charlie, which was fired over the same ground zero. Another difference, of course, is
that the ground received more thermal heating from Shot Charlie (heights of burst were nearly
the same) and that the incident pressures were somewhat higher.

Shot Easy also provides evidence that in some way the nature of the surface affects the
pressure wave as it passes. Shot Easy was fired over a macadam circle 1,500 feet in radius.
Figure 8 shows that the pressures recorded on the two outermost gauges do not fall far below
the expected levels, ! whereas the recording on the closest gauges diverge considerably. It
could be inferred that because of the better surface near ground zero, the yield looks about
right from a distance. In the region where the reflection chart gives large reflection coef-
ficients, the observed pressures are low and rise times are slow. If the six gauges at Station
B2, including the two mounted face up at ground level, are accurate, the pressure wave in
this region of the front differed considerably from the classical shock-wave form. Unfortu-
nately the gauge line was not designed to record shock waves from Shot Easy, each gauge being
on a different radius. (This was also true to a lesser extent of the other shots, in which the
gauge line was designed to record shock waves from either Station 2 or Station 3 as intended
ground zeros.) Station B2 was also the closest station (2,031 feet). Thus there is no know-
ledge of the pressure wave in the region of regular reflection, since Mach reflection occurred
prior to 1,500 feet.

So much for the characteristics of the pressure-~time curves. Ignoring for the moment
the nature of the curves and the causes for the observed low pressures, refer again to Figs. 6,
7, and 8. A most entertaining use of the information is to plot some of it on a height-of-burst
chart*. . To do this the curves must be reduced to 1 kt and correction made to sea level pres-
sure conditions. The pressure correction has the effect of increasing the pressure at a given

*Since the observed pressures for Buster were lower than anticipated, considerable
study of the data in relation to LA-743R has already been carried out by Los Alamos, Sandia,
and AFSWP personnel. The Los Alamos Scientitic Laboratory is publishing a rather complete
discussion of the subject in LA-1406, Height of Burst for Atomic Bombs; preliminary revision
of the height-of-burst curves based on this theory was published in Supplement 1 to TM 23-200,
Capabilities of Atomic Weapons, February 1952, prepared by the Armed Forces Special Weap-
ons Project. A set of experimental height-of-burst curves has been constructed from Green-
house, Buster, and Jangle data. Possible reasons for disparity with LA-743R are examined,
and recommendations for further tests are made.!0 The discussion parallels in part the
-above-mentioned memorandum, from which the experimental height-of-burst chart (Fig. 14)
is taken.




'i distance by a small percentage. The experimental height-of-burst chart for which the re-
I duced data were employed is shown in Fig. 14. This comparison shows that

At given distances, and especially in thehigh-pressure region, observed
) pressures are somewhat lower than the curves show.

The points representing mean effective radii at Nagasaki and Hiroshima are
- invariant; thus they appear in a lower pressure region if the experimental data
are accepted.

There are several reasons for the discrepancy between the observed pressures and the
pressures suggested by the curves: .

In LA-743R, 1.5 was used as the reflection coefficient at large angles of
incidence; therefore the fraction of yield going into an equivalent pentolite
yield was 0.75. Using instead a reflection coefficient of 2 has the effect of
reducing this fraction and dropping the pressures at given heights along the
vertical axis. At 1,120 feet, for example, the 20-psi isobar intercept drops
about 200 feet and is replaced at 1,120 feet by the intercept for 13 psi. At large
distances, for heights of burst below the knees on the chart the pregsures are
slightly increased, and over the range 15 to 4 psi the changes are quite small
because both calculations relate to the same experimental data (Bikini Able) in
this region.

The knee on the curves arises from a strict application of the reflection’
chart. This chart'is in part theoretical and in part based on data from shock 1 |
tubes and small HE charges. Particularly in the region beyond the onset of Mach
reflection, the factor by which the free air pressure is multiplied is somewhat ;
larger than the factor for regular reflection. Also, in this region the experi- ﬂ :
mental data are meager and scattered. There is some evidence, especially from
P Shot Baker, that these large multiplication factors are not entirely realized, or
G at least that the high pressures have extremely short durations. All three shots
' support the conclusion in that the pressures are relatively lower in this region

(Figs. 6, 7, and 8) than they are farther out.

B AT S SOOI 5 R N e

The curves at pressures greater than 20 psi have not been computed in de-
tail. For 20 psi the knee is not pronounced. Sample calculations at higher pres-
sures indicate that an isobar of reflected pressure on the reflection chart inter-
sects the line of onset of Mach reflection at higher incident pressures than for
normal incidence. The knee of the height-of-burst curve gradually disappears
as high-pressure isobars are approached. :

CE N ey

The reflection chart is based on a seusitive effect and represents more
nearly a theoretical maximum of expectation than a compilation of experience.
The theory also deals only with strict shocks. Further study is required to
determine the influence of finite rise times on the phenomena of Mach reflection.
There is no question but what the reflection chart is valid to some extent, but
experimental verification even for HE charges is required.

Perhaps most important of all, but also most difficult to explain in detail,

. is the fact that the pressures attained in the shock wave are influenced by the !
character of the surface over which the bomb is burst. A complete study of the R

possible effects is time-consuming because of the large number of variables. So f

- far as the height-of-burst curves are concerned, the variable nature of surfaces
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distance by a small percentage. The experimental ’ int
duced data were employed is shown in Fig. 14. dsly any uncertalnty
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At given distances, and espe;
pressures are somewhat lower

éan affect the shock wav; Will
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‘_(Studies
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’\\
]jex..\ S
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The experimental study of the réflection phenomena for HE charges should be acceler-
ated to provide a better understanding of the reflection chart and the effects of different sur-
.- faces (even in the absence of thermal radiation).

Greater emphasis should be placed on the fact that the height-of-burst curves and anti-
cipated damage to structures subjected to a given overpressure are not known precisely. An

effort should be made to present these facts to the military user in somewhat simpler terms
than are used in SC-1827(Tr), which covers the subject in some detail.
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Appendix A to:
Operation Buster
Some Measurements of Overpressure-Time vs Distance
for Airburst Bombs

Summary of Data and Pressure-Time Curves for
Shots Baker, Charlie, Dog, and Easy




Summary of Blast Data -- Shot Baker

. Ground
e Zero Slant Time of Positive
= distance range Pressure ~, arrival duration
Location (ft) (ft) (psi) ‘25 {msec) ' (msec)
A2S 1,243 1,670 6.5 791 330-400
A3S ) 117 1,121 16 433 Not reliable
B2S 859 1,405 11 620 350
B215L 876 1,405 12 1.< 633.5 370
B215R 876 1,405 11 2.3 633 375
B3S 259 1,145 19 446 280
B315L 242 1,145 18 ] 459 250
B315R 242 1,145 15 3 459 330
cs 681 1,308 12 - 553.5 290
Cl5L 681 1,308 13 —+ 561 300-400
f C15R 681 1,308 13.5 4 561 300
DS 1,123 1,585 9 757 380
i DI5L 1,123 1,585 15 764 5-msec spike
S D15L 1,123 1,585 9 - 380
DI15R 1,123 1,585 20 765 5-msec spike
DI15R 1,123 1,585 11 - 400
g El5L 1,543 1,905 11.5 1,015 10-msec spike
' E15L 1,543 1,905 9 - 300
E15R 1,543 1,905 12 1,016 8-msec spike
E15R 1,543 1,905 10 - 360
FS . 1,953 2,250 7.8 1,288 400
F15R 1,953 2,250 8.00 1,297 5-msec spike
F15R 1,953 2,250 6.8 - 300
. GS 2,361 2,615 5.80 1,588 430
HS 3,375 3,555 3.3 2,379 520
1S 4,380 4,520 2.7 3,209 580
JS 5,385 5,510 1.9 4,059 640
From aiming point: N 141 feet
w 0 feet
H 1,118 feet
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Summary of Blast Data -- Shot Charlie

Ground _
2ero Slant Time of Positive

distance range Pressure arrival = duration
Location (ft) (ft) (psi) (msec) (msec)
A2S . 1,246 1, 668 13 520 600
A3S 163 1,122 65 298.4 -
B2S 877 1,415 26.5 418 385
B215L 894 1,415 26.8 469 400
B215R 894 1,415 24.6 469.5 500 |
B3S 298 1,152 62 307 - !
B315L 281 1,152 60 320.1 340
CS 768 1,352 30.5 386 415 i )
C15L 768 1,352 28.5 418 470 ¥
C15R 768 1,352 30 417 405 ‘ i 4
DS 1,245 1, 668 16.4 516 630 .
D15L 1,245 1,668 12+1 524 580 ;
D15R 1,245 1,668 18%2 524 580 i ]
ES . 1,673 1,945 8.5 69013 700
E15L 1,673 1,945 gt1 698 600 i
E15R 1,673 1,945 11 698 600
FS 2,138 2,410 6.5 - 711 - -
F15R 2,138 2,410 6 920 590
GS 2,495 2,735 7.20 1,202%3 ' 660
HS 3,505 3,675 4.8 1,977 710
IS 4,520 4,660 4.0 2, 754 736
JS 5,520 5, 630 2.9 3,557 883

N 135 feet
% 135 feet
H 1,111 feet

From aiming point:




Location

A2S
A3S
B2S
B2PO
B2P5
B2P10
B2P25
B2P50
B3S
CS
Cl5L
C15R
DS
DPO
DP5
DP10
DP25
DP50

ES
E15L
EI5R
FS
F15R
GS
HS
IS

JS

Summary of Blast Data -- Shot Easy

From aiming point:

Ground
zero Slant
distance range Pressure
(ft) (ft) (psi)
1,732 2,174 No Signal
2,873 3,159 6.8
2,031 2,420 8.5
2,031 2,420 11
2,031 2,420 10
2,031 2,420 11
2,031 2,420 10
2,031 2,420 9
2,541 2,862 7.6
2,505 2,832 7.3
2,505 2,832 7.0
2,505 2,832 7.4
2,910 3,195 7.6
2,910 3,195 8.5
2,910 3,195 8.5
2,910 3,195 8.7
2,910 3,195 9
2,910 3,195 9
3,270 3,527 7
3,270 3,527 7
3,270 3,527 8
3,630 3,862 5
3,630 3,862 7
3,995 4,210 6.60
4,915 5,085 No Signal
5,860 6,000 4.7
6,750 6,950 3.4
S 54 feet
%4 192 feet
H 1,314 feet

Time of
arrival

(msec)

1,439
870
871
871
873
879
888

1,210

1,180

1,187

1,183

1,490

1,493

1,500
1,503.7-
1,515.6

1,761
1,764
1,765
2,025.5
2,030
2,301.6
3,776
4,569

Positive
duration

(msec)

780
770
740
740
780
780
800
900
700
750
840
790
800
820
860
1,000
850

840
850
880
900
750
1,300

1,300
1,250
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Pressure-Time Data

Shot Baker
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Pressure-Time Data
Shot Charlie
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Pressure-Time Data

Shot Dog
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Pressure-Time Data
Shot Easy
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A ppendix B to:
Operation Buster
Some Measurements of Overpressure-Time vs Distance
for Airburst Bombs

The recording system consisted mainly of three commercially available items:

1. Wiancko pressure gauges manufactured by the Wiancko Engineering
Company of Pasadena, California. A description of these gauges can be found
in Greenhouse Report Annex 3.4, Part 1.

2. Carrier-Amplifier System D manufactured by the Consolidated Engineer-
ing Corporation. This system employs a 3 kc/sec carrier, permitting flat re-
sponse from zero to 500 cps. The rise time (including the galvanometer, Conso-
lidated type 7-223) when a step transient is applied through the system is slightly
faster than one msec.

3. Type 5-114 18-channel recording oscillographs manufactured by the
Consolidated Engineering Corporation.

All the equipment was operated on 110 volts a-c except one of the recording oscillographs,
which was battery-powered.
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